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This paper illustrates the use of the so-called unigrid method as a multigrid simulator by 
applying it to an oceanographic problem with an irregular domain. 

1 .INTRODUCTION 

Multigrid methods are generally very effective for solving differential boundary 
value problems. This is true because the smooth error, which is slow to converge 
during relaxation, is reduced by iterating on the problem projected onto coarser grids, 
where relaxation is both cheaper and more efficient. Fine grid relaxation can then be 
viewed as an attempt to eliminate the high frequency error. 

In lieu of coarse grid iterations, one can, in fact, modify the fine grid relaxation 
process in order to reduce the smooth error directly on the fine grid (i.e., without the 
use of coarser grids at all). Under certain assumptions (see Section 3) the resulting 
methods, so-called unigrid 131, is theoretically equivalent to conventional multigrid in 
the sense that it produces the same results in exact arithmetic. Unigrid has different 
computational characteristics than multigrid, however, since it requires less storage 
and shorter code, but significantly more arithmetic work. More importantly, it is 
much easier to apply to a given problem because most of the design work for the grid 
transfers and coarse grid operators is automatic. Thus, existing software packages 
that solve possibly very complex problems by SOR, for example, can be easily 
modified for application of unigrid. This can usually be done by making a few 
changes in the relaxation routine without impacting any of the other software routines 
or data structures. These features make unigrid effective as a multigrid software 
simulator for quick and easy determination of the applicability of multigrid to a given 
problem. 

Unigrid is developed in Section 2, its relationship to multigrid is described in 
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Section 3, some simple theory is presented in Section 4, and its use is illustrated with 
a North Atlantic basin oceanographic model problem in Section 5. This application 
demonstrates how unigrid (and, hence, multigrid) can be used efficiently with vector 
computers on problems with irregular domains. 

2. UNIGRID 

Assume given the d-dimensional operator equation 

AU=F, VEX;, (2.1) 

where A: <X; -+ 4 is a linear operator and & and & are appropriate Hilbert spaces 
of functions defined on a region I2 in R d, d > 2. Assume that (2.1) admits 
discretizations by a family of matrix equations, parameterized by admissible grid 
sizes h > 0 and given by: 

AhUh =fh, Uh E zh, (2.2) 

where zh = Rnh and nh is an integer (approximately proportional to bed). Upper 
case U* will denote the exact solution of (2.2) and lower case uh its approximation. 
The grid transfers are full rank linear operators, represented by Z~:~‘-+~h, that 
satisfy the consistency condition Zi= Zi,Zt’ for admissible h; h’, and h when 
h<h’<hori>h’>h. 

The objective is to reduce the error from a current approximation uh in the 
subspace defined by a set of directions Ph = (d,, d*,..., d,) cCFh. Letting Dh = 
Id, 3 d, ,..., d,], then a Ritz projection can be performed that corrects uh by a function 
in the space of Qh, so that the projection of the resulting residual over the subspace 
is zero. This leads to the problem of finding some s = (s, ,..., s,)* so that 

Dh’[Ah(uh + Dhs) -f”] = 0. 

This can be rewritten as 

DhTAhDhs = DhT[ f h - Ahuh 1. 

Gauss-Seidel relaxation on this system with some initial approximation s and a new 
approximation Scan be written as 

Fi= 
( 
fh -Ahuh - K‘ sjAhdj 

i’;i 

- i = 1, 2 ,..., nh. 

Then uh can be corrected by 

uh 6 uh + Dhs. 
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FIGURE 1A 

Since A” is linear, then corrections can be made to uh directly, rather than to s, 
resulting in the directional iteration 

uh + uh + [(f” -Ahuh, di)/(Ahdi, d,)] di, (2.3) 

where left arrow denotes replacement. (Note that these are simply the basic steps of 
Gauss-Seidel applied to s.) Rewriting (2.3) as 

uh + Gh(uh, d), (2.4) 

then one sweep with initial guess uh consists of iterating with (2.4) in sequence over 
dk, k = 1, 2,..., nh. For example, Gauss-Seidel is specified by the choice dk = et, the 
kth coordinate vector in Rh. 

To define unigrid for a given admissible grid size h = H,, suppose m > 1 is an 
integer so that H, = 2”H0 are admissible, q < m. Now define the direction sets for 
unigrid according to 

where d:q = 1; efq. Thus, the directions on level q are just the relaxation directions 
on grid H, transferred to grid h = H,. 

One of the many possible unigrid schemes is described in terms of the relaxation 
parameters v and v, and the cycling parameter ,u. The unigrid cycles are then defined 
recursively by: one unigrid cycle on level q consists first of v unigrid relaxation 
sweeps via (2.4) with directions dfq, k = 1, 2,..., nHq, followed for q < m by ,D cycles 
on level q + 1 and for q = m by v, more sweeps via (2.4). 

B 
dzh 1 

dzh 2 

FIGURE 1B 
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FIGURE 1C 

Remark. The directions defining unigrid depend not directly on the operator A 
but rather on the domain a. Using linear interpolation, then these directions d: are in 
fact the ith grid h coordinate vectors interpolated to grid H,. In one dimension, this 
is illustrated by Figs. lA-IC. For rectangular 0 in two dimensions, each direction is 
a product of two such functions, one in x and the other in y, resulting in the “tent” 
function described as follows: 

With the usual double subscript notation and nh = Nh X Nh, then dt+, = ei,, for 
h = HO, 1 ,< k, I,< Nh. The coarse grid directions are defined so that the i, j 
component of d?, is 

df,;(i,j) = (24 - /k - i1)(2q - 11 -jl), if Ik-iI, /l-jl<29, 

= 0, otherwise. (2.7) 

This assumes that the point denoted by (k, 1) is a point of the Hq grid. 
In irregular regions where boundaries do not lie on coarse grid lines, there are 

several options possible for treating these boundaries. The most obvious, which is 
analogous to the usual multigrid approach, is to define the directions as the inter- 
polated coarse grid coordinate vectors and use the (zero) boundary conditions 
properly in interpolation. This is illustrated in one dimension by d, in Fig. 2. Note 
that this requires special handling of the coarse grid points that are adjacent to the 
boundary. Another approach is simply to ignore those directions which would 
overlap the boundary so that d, is suppressed as in Fig. 3. In Section 5, this will be 
referred to as the contracted boundary method. This means that some points near the 
boundary are not corrected by smooth error iterations, so the danger is that 
convergence is slowed (see Section 5). 

Another possibility is to enlarge the region 0 so that it is aligned with the coarse 
grid directions, but ignore correcting that part of the expanded region R that does not 

FIGURE 2 
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FIGURE 3 

lie in the interior of R. This is illustrated in Fig. 4. Note that this method, which here 
is called the expanded boundary approach, does not require extra information at the 
boundaries, so the directions can be computed once for each grid over the entire 
domain 0 and stored in the form of a matrix stencil. 

3. MULTIGRID 

3.1. Conventional Multigrid 
One multigrid cycle on problem (2.2) with present approximation uh, right-hand 

side Th, and h = H, is denoted by MGh(uh, f”) and defined recursively by: 

(i) For q = m, MGh(uh,Th) consists of v + V, relaxation sweeps via (2.4) with 
directions e,h, k = 1, 2 ,..., nh. 

(ii) For q < m, MGh(uh,fh) consists of: 
Step 1. Perform v relaxation sweeps via (2.4) with directions et, k = 1,2,..., nh. 
Step 2. Let rh =fh - Ahuh, rZh = Iihrh, uZh e 0, and perform p grid 2h cycles via 

MGzh(uZh,fZh) withf2h = r2h. 
Step 3. Set uh + uh + I:,uZh. 

3.2. Immediate Replacement Multigrid 

Multigrid is theoretically equivalent to unigrid if, as is henceforth assumed, the 
formulation of the coarser grid equations satisfies the variational conditions 

AZ” = IZhAhlh 
h 2h 

1;” = “h(z;h)T, 

(3.1) 

(3.2) 

FIGURE 4 
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where a” is a scalar. To see this, it is convenient to inroduce a modified multigrid 
algorithm that depends directly on the fine grid right-hand sidef”“. Its cycles on grid 
h = H, are denoted by MGIR,(f’), where q is used in place of H, as a subscript or 
superscript. It is characterized as a modification of conventional multigrid applied to 
(2.2) in which all coarse grid changes are immediately reflected in the fine grid 
approximation and the line grid residual is recomputed and used to redefine the 
coarse grid equations. Immediate replacement multigrid is then defined in terms of 
MGIR,(f’) by: 

(i) For q = m, MGIR,(f’) consists of performing v + v. relaxation sweeps via 

u” t u” + [ (I;f(f” - A”uo), ef4)/(AqeFq, eFq)] 1ieF4, 

k = 1, 2 ,..., nq. 

(i) For q < m, MGIR,(f’) consists of v relaxation sweeps via (3.3) followed 
by p level q - 1 cycles via MGIR,- i(f”). 

Note that the immediate fine grid correction is incorporated in the relaxation scheme. 
This scheme on a level q > 0 is just (2.3) with up = 0, 0 <p < q, and 
r* = Zz(f” - A ‘u”), followed by interpolation of the correction directly to the finest 
grid. 

3.3 Theoretical Equivalence 

It is not difficult to see [3] that MGIR is fully equivalent to MG under 
Conditions (3.1), (3.2). This is done by noting what the status of intermediate MG 
calculations would be if coarse grid changes were immediately reflected in the fine 
grid approximation. By examining the iterative formulae, it is easy to see that MGIR 
and unigrid are identical, from which it follows that multigrid designed according to 
variational conditions (3.1) and (3.2) is theoretically equivalent to unigrid. 

3.4. Implementation Differences (See [3] for more details.) 

Unigrid code is typically very compact, partly because it lacks the modular 
structure of multigrid software. This is one reason that unigrid code can be developed 
very quickly. Also, there are fewer design choices with unigrid, since the coarse grid 
and grid transfer operators are automatically determined. This also adds to ease of 
programming, but restricts the flexibility of the method. The design of unigrid also 
guarantees convergence independently of the choice of the coarse level iteration 
directions and cycling scheme, so mistakes may slow convergence but do not result in 
divergence as often as for multigrid. 

This ease of programming and small program size make unigrid an effective 
method to test the convergence behavior of multigrid for many application problems. 
For many existing codes, it is relatively easy to replace a conventional linear 
equation subroutine (especially if it is based on some form of relaxation) in order to 
perform such a feasibility test. Of course, the amount of work involved makes any 
comparison of solution time meaningless, but actual multigrid efficiency can be 
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predicted by applying the usual multigrid operation counts to the unigrid cycling 
scheme. Since the methods are equivalent in terms of results when multigrid is 
implemented according to (3.1), (3.2), then unigrid will accurately represent the 
numerical performance of such a variationally formulated multigrid scheme. 

4. THEORY 

Assuming that A ’ is symmetric and positive definite, define the energy inner 
product and norm on Hh by 

(Xh,.vh)Ah = (AhXh,Yh) 

and 

IIXhlJAh = (AhXh, Xh)“2, 

respectively. Let Wh denote the set of all Ah-unit vectors in span{ wh : Ahwh =pwh, 
,U < A}. Let Yt denote the Ah-orthogonal complement of span p and let Fh denote 
one pass of (2.4) over the fine grid directions C9” which is assumed to span zh. For 
each integer v > 1, define Y’I;,, as the restriction of (Ah)-“* ((Gh)“)’ Ah(G 
(Ah)-“* to Vi. (For Jacobi-type versions of (2.4), this latter operator simplifies to 
(G”)‘“.) Then, with 2M the degree of the differential operator in (2.1), assume (cf., 

121) 
(Al) There exist constants a > 0 and c,, < co independent of h and such that: 

11 Wh - R(z:,)ll:h < c,(kh2”)a 

for all admissible h and all wh E Wi, where R(Z:,) is the range of Zih. (Note that 
R(Zi,) = Span(@), the coarse grid directions.) 

(A2) There exist constants c, , c2 > 0 with c1 < 1 and c2 < (c, + 1) h -‘,“/p(Ah), 
where p(Ah) is the spectral radius of Ah, such that 

p(F~,,) < max{c;‘, 11 - c,~h*“‘l”}. 

THEOREM. Suppose ,u > 1 and m and v, are such that the error from the coarsest 
level does not significantly contribute to the finest level error. Then there exists a v 
independent of h such that unigrid converges to the solution of (2.2) by a fixed linear 
rate independent of h. 

ProojI This theorem follows from the results of Section 3 that relate unigrid to 
multigrid and from the theory of [2] slightly modified to account for the class of 
relaxation methods depicted in (2.4). 

Relaxation does not generally minimize the residual error, although it should 
approximately. In fact, when direct application of unigrid to (2.2) exhibits 
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convergence but does not monotonically reduce the residual error on the coarse 
levels, this is a signal that the directions for relaxation are improperly defined. They 
should be chosen to approximate the smooth eigenvectors of Ah, that is, those that 
belong to the lower end of its spectrum. This would ensure that relaxation quickly 
eliminates the oscillatory eigenvector components of the error with little effect on the 
smooth ones. Since the spectrum of Ah that corresponds to these oscillatory 
components is relatively narrow, there is a close relationship between error in the 
energy norm, for which relaxation is a minimizer, and the residual error norm. The 
residual norm is not generally minimized by relaxation, but a proper choice of 
directions coupled with a good smoothing rate ensures that it will be monotonically 
reduced. 

~.NUMERICAL RESULTS 

This section contains a report on numerical experiments with unigrid applied to the 
solution of the model problem 

-V2u+Lu=f in L2, u=g on iX2, (5.1) 

where R is an irregular domain used to describe the North Atlantic basin. In this 
case, fl is rectangular on three sides but irregular on the fourth, as depicted by Fig. 5, 
and L is a given function which is set to the constant 64 in the following experiments. 
(Such a value for 1 results in strong positive definitiveness of the operator in (5.1), 
leading to very fast convergence rates for multigrid. Such a value, however, is fairly 
realistic for this application and sharply depicts the disadvantage of using the 
contracted boundary method described in Section 3.) In these experiments, the fine 
grid spacing is h = 0.0625 and the rectangle encompassing R is 10. 3 1 x 10. 2 I. In 
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each case, a very simple grid cycling scheme with four grids is used, where each cycle 
involves three relaxations, each performed in turn on grids 8h, 4/z, 2h, and h. Four 
cycles are made for each of the three problems, with u = 0 as the initial guess. The 
usual central five-point stencil was used to discretize (5.1). 

The main feature of the discretization of (5.1) is that the boundary is enforced to 
pass through grid h vertices. Although this represents only an approximation to the 
actual boundary (of reduced order), it has conservative properties that are not easily 
obtained any other way. More specifically, conservation of kinetic energy, vorticity, 
and enstrophy in a dissipationless finite difference discretization of atmospheric 
diffusion problems can be easily guaranteed when the grid points and irregular 
boundary points coincide (cf., [4]). Although this is an advantage when used on a 

TABLE I 

Cycle Relaxation 
number level 

8h 

4h 

2h 

h 

8h 

4h 

2h 

h 

Multigrid on 
IO,31 x IO.21 

7.402E + 03 
1.197E + 03 
2.745E + 02 

2.617E + 03 
7.758E + 01 
3.416E + 00 

4.27OE + 02 
8.35OE + 01 
2.200E + 00 

1.090E + 02 
1.784E + 01 
7.771E+OO 

3.620E + 01 
9.004E + 00 
2.383E + 00 

3.236E + 01 
8.235E - 01 
3.198E-02 

6.099E + 00 
1.139E + 00 
2.956E - 01 

1.363E + 00 
2.2328 - 01 
1.048E - 01 

Dynamic residual error 

Contract 
multigrid 

on0 

6.027E + 03 
1.147E t 03 
1.753E + 02 

2.384E + 03 
8.864E t 01 
3.927E t 00 

5.663E + 02 
1.359E + 02 
4.339E t 01 

2.716E t 02 
8.348E t 01 
3.8368 t 01 

3.602E + 01 
6.381E t 00 
1.145E t 00 

3.607E + 01 
1.383E + 00 
6.425E - 02 

4.050E t 01 
1.006E + 01 
3.073E + 00 

2.030E t 01 
9.095E t 00 
4.764E + 00 

Expanded 
multigrid 

on R 

7.418E + 03 
2.465 E + 03 
1.037E t 03 

2.3648 t 03 
2.598E t 02 
2.187E t 02 

4.311Et02 
1.002E t 02 
2.602E t 0 1 

1.437E t 02 
2.630E t 01 
9.057E + 00 

3.749E t 01 
9.45 1E + 00 
4.826E + 00 

3.166E + 01 
4.491E + 00 
2.348E + 00 

6.358E + 00 
1.373E t 00 
3.161E-01 

2.116E+OO 
4.554E ~ 01 
1.694E - 01 

Table confinued 
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TABLE I (continued) 

Dynamic residual error 

421 

Cycle 
number 

Relaxation Multigrid on 
level [0,31 x IO,21 

8h 

4h 

2h 

h 

8h 

4h 

2h 

h 

3.602E - 01 
8.874E - 02 
2.134E-02 

3.599E - 01 
8.122E - 03 
3.198E - 04 

l.l27E-01 
2.044E - 02 
5.259E - 03 

2.329E - 02 
4.590E - 03 
2.076E - 03 

4.4348 - 03 
9.947E - 04 
2.325E - 04 

4.774E - 03 
1.055E - 04 
4.965E - 06 

2.096E - 03 
3.6328 - 04 
9.150E-05 

6.079E - 04 
1.561E -04 
6.461E-05 

Contract 
multigrid 

on R 

9.720E - 01 
3.538E - 02 
7.674E - 03 

3.644E + 00 
1.276E - 01 
6.083E - 03 

4.954E + 00 
1.126E + 00 
3.595E ~ 01 

2.687E + 00 
1.272E + 00 
7.18lE-01 

1.617E - 01 
4.012E - 03 
5.5828 - 04 

6.814E-01 
2.275E - 02 
1.167E-03 

7.891E-01 
1.697E-01 
5.688E - 02 

4.213E - 01 
2.089E - 01 
1.243E - 01 

Expanded 
multigrid 

on R 

5.507E - 01 
1.325E - 01 
9.404E - 02 

4.807E - 01 
l.743E - 01 
1.064E - 01 

1.354E - 01 
3.299E - 02 
9.587E ~ 03 

4.2098 - 02 
1.035E - 02 
4.465E - 03 

8.48OE - 03 
4.178E-03 
3.872E - 03 

9.658E - 03 
4.446E - 03 
3.06lE-03 

3.475E - 03 
7.559E - 04 
2.512E - 04 

1.248E - 03 
3.633E ~ 04 
l.590E - 04 

vector processor, however, coarse grids in the usual multigrid process will not 
generally share this simplified property. The question then is whether or not one of 
the means for preserving this feature on coarser grids (namely, boundary contraction 
or expansion) will maintain the efficiency of the usual multigrid process. Such is the 
objective of the experiments reported in this section. 

To compare the contracted and expanded boundary methods with the usual 
multigrid, unigrid was used on the Cray 1 at NCAR as a simple tool to simulate 
multigrid performance. Instead of comparisons with the usual multigrid on the 
irregular region, it was much simpler to compare the two methods with the analogous 
(i.e., naturally extended) problem defined on the entire rectangle [0, 3) x [O, 2). Thus, 
a function U on this rectangle was chosen to determine f and the usual unigrid 
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algorithm was run on the full rectangle. The results are depicted in the first column of 
Table I. Both the contracted and expanded boundary methods were also tried with the 
same f, but with f restricted to the irregular region fin. The results are depicted in the 
second and third columns of the table, respectively. Note the severe degradation in 
convergence for the contracted boundary method. As might be expected, however, 
there is almost no loss of efficiency with the expanded boundary approach. 

Although these are admittedly very limited experiments, they represent the 
numerical experience with several such tests that were conducted. Generally, although 
full multigrid (FMG) vastly and expectedly improves the performance of the 
contracted boundary method, it remains somewhat less efficient than conventional 
multigrid. On the other hand, the expanded boundary method seems generally as (or 
nearly as) effkient as, and therefore preferrable, to the usual multigrid approach, 
expecially for use on vector processors such as the Cray 1. 
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